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Summary 
A methodology combining molecular structure represented by fragments, and artificial neural network 
(ANN) was applied for the prediction of a new acetylcholinesterase (AChE; EC 3.1.1.7) reactivator. We 
searched for a new structure of the AChE reactivator with the capability of reactivating AChE inhibited by 
almost all actual nerve agents. For this purpose, we have tested in vitro seventeen potential AChE 
reactivators for reactivation of AChE inhibited by sarin, cyclosarin, agent VX and tabun. The results 
obtained were used as input data for prediction by ANN. Using ANN we have predicted new AChE 
reactivators.  
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INTRODUCTION 
 
Nerve agents such as sarin, tabun, cyclosarin or 
agent VX are in some countries included as warfare 
chemical compounds (Bajgar 2004). They are 
powerful inhibitors of cholinesterases, especially 
acetylcholinesterase (AchE; EC 3.1.1.7), the 
enzyme splitting acetylcholine at cholinergic 
synapses.   In the case of the AChE inhibition,  ace- 
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tylcholine accumulates itself at nerve synapses and 
hyperstimulates post-synaptic cholinergic receptors. 
Afterwards, a cholinergic crisis occurs (Patočka et 
al. 2004). 

These compounds pose an increasing threat in 
the world due to their possible use in war conflicts 
(“Gulf war”; Iraq 1990–1991) or in terrorist acts 
(The sect Aum Shinri Kyo, Japan, 1994, 1995).  

From the chemical point of view, these 
substances are alkylphosphates, alkylphosphonates 
or their thioanalogues. Their inhibition effect is 
caused by phosphorylation, respective 
phosphonylation of serine hydroxy group in the 
active enzyme site (Fig.1) (Kuča et al. 2003).  

The standard treatment for nerve agent 
intoxications involves the administration of 
atropine and AChE reactivators (Marrs 1993). 
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Pralidoxime [2-hydroxyiminomethyl-l-
methylpyridinium chloride], obidoxime [1,3-bis(4-
hydroxyiminomethylpyridinium)-2-oxapropane 
dichloride] and oxime HI-6 [1-(2-
hydroxyiminomethylpyridinium)-3-(4-
carbamoylpyridinium)-2-oxapropane dichloride] 

are the most well known representatives of AChE 
reactivators (Kassa 2002). Unfortunately, none of 
the currently used AChE reactivators is able to 
reactivate AChE in all nerve agents used (Kuča et 
al. 2005). 
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Fig. 1. Inhibition of acetylcholinesterase by tabun 
 
 

Scientists have attempted for centuries to 
develop drugs with targeted effects. Today, with 
data stored in knowledge bases and with the high 
computing power of common computers, is easier 
to reach this aim. Mathematical tools are involved 
in the search for (quantitative) structure-activity 
relationships to build (Q)SAR models. Different 

methods are applied to realize these models, 
starting with simple linear or multilinear methods 
(Hemmateenejad et al. 2002), through partial least 
squares methods (Wold et al. 2001) and finishing 
with artificial intelligence methods 
(Hemmateenejad 2005). 

 
 
 
Table 1. Reactivation potency of tested AChE reactivators 
 

 Oxime Sarin Cyclosarin VX Tabun 
1 BI-6 32 57 46 3 
2 TO092 44 0 77 8 
3 TO029 44 0 70 0 
4 TO063 16 0 26 2 
5 TO058 25 0 46 9 
6 Obidoxime 41 0 79 0 
7 TO046 54 0 72 46 
8 Pralidoxime 36 3 44 1 
9 Methoxime 21 32 45 0 
10 TO047 34 0 41 8 
11 TO052 44 3 71 8 
12 Trimedoxime 76 0 85 41 
13 TO057 30 8 26 8 
14 HI-6 40 58 59 2 
15 TO020 4 0 6 6 
16 4-PAM 16 3 35 6 
17 TO033 22 0 20 2 

 
 
 
 

Artificial neural networks (ANN) are a group 
forming one of these artificial intelligence methods. 
They were introduced in the 40‘s of the past century 
(McCulloch and Pitt 1943) and during the last thirty 
years a number of different kinds of ANN were 
developed, which are applicable in many areas of 
science. They are used very often for the modeling 

of very complex problems, in areas such as ecology 
(Lek and Guégan 1999), weather forecasting 
(Ramírez et al. 2005), prediction of volcanic 
activity (Luongo et al. 2004), pharmacology 
(Turner et al. 2004), toxicology (Hemmateenejad 
2005) and chemistry (Dohnal et al. 2003, Brodnjak-
Vončina et al. 1999). They are applied especially in  
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Monoquaternary AChE reactivators                                  

N
R1

NOH

X-
+

                 
 

Oxime  Position of 
the oxime group 

Substituent located on nitrogen 
of the pyridinium ring (R) 

Pralidoxime 2 -CH3 
TO 020 2 -CH2-Ph 
4-PAM 4 -CH3 
TO 063 4 -(CH2)5-CH3 

 

Bisquaternary AChE reactivators                                     

N
R2

NOH

2X-

+

N
+

R3                    
 

Oxime Position 
of the oxime 

group 

Substituent located on the second 
pyridinium ring  (R3) 

Chemical structure of the bridge  
(R2) 

TO 033 4 4-CH=NOH -(CH2)6- 
TO 047 4 4-CH=NOH -(CH2)5- 
TO 046 4 4-CH=NOH -(CH2)4- 

Trimedoxime 4 4-CH=NOH -(CH2)3- 
TO 029 4 4-CH=NOH -(CH2)2- 

Methoxime 4 4-CH=NOH -(CH2)1- 
TO 057 4 4-CH=NOH -CH2-CH2-SO2-CH2-CH2- 
TO 058 4 4-CH=NOH -CH2-CH2-S+(CH3)-CH2-CH2- 

Obidoxime 4 4-CH=NOH -CH2-O-CH2- 
TO 052 4 4-CH=NOH -CH2-CO-CH2- 

BI-6 2 4-CONH2 -CH2-CH=CH-CH2- 
HI-6 2 4-CONH2 -CH2-O-CH2- 

TO 092 4 - H -(CH2)3- 
 
 
Fig. 2. Structures of tested AChE reactivators 
 
 
 
chemistry in the optimization of chemical processes 
(Farková et al. 1999), analytical method 
development (Hameda et al. 2005) or for QSAR 
modeling (Hemmateenejad 2005). 

In this work, we were interested in the rational 
prediction of new AChE reactivators able to 
reactivate broader spectra of nerve agent inhibitions 
(sarin, cyclosarin, VX and tabun). For the rational 
prediction we have used ANN. Results from the in 
vitro experiments were used as the input data for 
the ANN. 

ANN THEORY 
 
The principles of ANN have been reviewed 
elsewhere (Basheer and Hajmeer 2000). Some brief 
information about the ways in which ANN is used 
will be given below. The kind of ANN called back-
propagation multilayer perceptrons (BP-MLP) 
(McClelland and Rumelhart 1988) was selected as 
appropriate for the QSAR   modeling.    The    ANN     
consists  of  elementary computing units called  
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Fig. 3. Plot of the dependence of the error of training and verification data set on the number of ANs in the hidden 
layer 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. The fragment-based molecular structure encoding algorithm 
 
 
artificial neurons (AN). The connections between 
neurons are weighted by weight coefficients, which 
determine their importance. In the ANs, the sum of 
weighted outputs of ANs from previous layers is 
calculated and when it it is higher than a certain 
value, bias, it is transformed by the “transfer” 
function and distributed to the ANs in the next 
layer. The ANs are sorted into three fully 
interconnected layers. The first one serves for the 
input of data, the second one, a hidden layer, is 
used for the calculations and the third one, output 
layer, provides the output of calculated results.  

For the weights and biases adjustment the back 
propagation adaptation algorithm was applied. It is 

the most common algorithm, which is based on the 
gradient methods. Briefly, the outputs of ANN are 
calculated, then compared with the targeted outputs 
and based on the sum of squares of differences for 
all of the outputs, the weight coefficients and biases 
are adjusted in the direction from the output layer 
toward AN in input layer. That is the reason for the 
name back propagation. 

The work with ANN has two stages – 
adaptation and prediction. During the adaptation 
phase, the best ANN architecture is searched for, 
while in the prediction phase only the calculation 
with the adapted ANN is performed. 
Mathematically,   the sum of  squares of differences  
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Fig. 5. Predicted new efficient AChE reactivators against multiple warfare agents 

 
 
 

between  the  targeted   and   calculated   outputs   is 
minimized. The ANN with the lowest and 
acceptable error rate for all the patterns is 
considered as successfully adapted. The problem of 
“overtraining” can occur, when the ANN shows 
low errors for all patterns, but is missing the 
property of generalization. It simply reproduces the 
data used in adaptation. The division of data set to 
two or more data subsets can avoid this to reach an 
unwanted result. The first data subset is called the 
training set. It is used only for calculation for 
adjustment of weight coefficients and biases. The 
second part of the data set, the verification set, is 
used for the verification of adaptation process, to 
monitor the generalization ability of ANN during 
the adaptation. The minimum errors for both data 
subsets assure the correctness of adaptation. In 
addition, in some work one more data subset is 
used, – the test set, similar to the verification set for 
the monitoring of the adaptation process.  
 
 
 
SOFTWARE 
 
The program package PDP++ 
(http://www.cnbc.cmu.edu/Resources/PDP++//PDP
++.html), a new generation of the original software 
package of McClelland and Rumelhart (McClelland 
et al. 1987), was used for the simulation of ANN. 
The package contains nine modules, including the 
bp++ module, which simulates BP-MLP. 
 
 
 
THE EXPERIMENT 
 
In vitro experiment 
Seventeen potential AChE reactivators were 
synthesized in our laboratory. Their chemical 
structures are shown in Fig. 2. All of them are 
mono or bisquaternary pyridinium aldoximes with 
nucleophilic oxime group. The reactivation efficacy 
was measured using the standard in vitro method 
(Kuča and Kassa 2003). 

The nerve agents used (sarin, cyclosarin, VX 
and tabun) were of 89–95% purity. They were 
obtained from the Military Technical Institute 
(Zemianské Kostolany, Slovak Republic). All other 
chemicals of a reagent grade were obtained from 
commercial sources. 

The general conditions of the in vitro method 
were taken as follows. Rat brain homogenate 
diluted in distilled water (10%, w/v) was used as a 
source of AChE. Measurement was taken at 25 °C, 
pH 8, and the concentration of the AChE 
reactivators was 10-3 M. Rat brain homogenate was 
inhibited for 30 min with the appropriate nerve 
agent. The AChE reactivator was then added. After 
10 min of incubation, the activity of AChE was 
determined by pH static titration of acetic acid 
released from acetylcholine iodide using the 
autotitrator (Copenhagen, Danmark). 

The percentages of reactivation obtained for all 
tested AChE reactivators are shown in tab. 1. 
 
 
 
 
ANN DESCRIPTION 
 
The chemical structures of all compounds exhibit 
similar fragments. The molecular fragment coding 
method was used for the transformation of 
molecular structures. Each molecule was then 
represented as the vector of 9 descriptors. The 
assignment of descriptors for the molecular 
fragments is depicted in detail on Fig. 4. Before the 
ANN application, the data were scaled to be in the 
range from 0 to 1. The data set, containing in total 
17 compounds, was divided into 2 subsets, the 
training with 13 and the verification with 4 patterns. 

The optimal ANN consisted of 9 ANs in the 
input layer (9 molecular descriptors), 4 ANs in the 
hidden layer and 4 ANs in the output layer. The 
chart showing the dependence of the error of 
training and verification data set as the function of 
number of ANs in the hidden layer of BP-MLP is 
presented in Fig. 3. The adapted ANN showed a 
sufficient error for both of the training and 
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verification data sets lower than 7 %.  More ANNs 
were found with the same architectures, which 
produced similar results.  

Five of them were used for the prediction. The 
data set for the prediction contained all possible 
combinations of fragments and the structures with 
the highest predicted reactivation efficacies for all 
of the nerve agents were selected (Fig. 5).   

 
 
 

CONCLUSION 
 
The ANNs were used for the prediction of new 
efficient reactivators for the acetylcholinesterase 
inhibited by four different nerve agents. The 
molecular fragment-coding algorithm was used for 
the structure representation. The ANN was 
successfully adapted using a very low number of 
data. New potential efficient AChE reactivators 
were predicted using adapted ANN. In future, these 
predicted compounds will be synthetized and 
tested.  
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