Nacházíte se zde: Úvod > Journal of Applied Biomedicine > 2_2 > nosek.htm

nosek.htm

Journal of APPLIED BIOMEDICINE
ISSN 1214-0287 (on-line)
ISSN 1214-021X (printed)

Volume 2 (2004), No 2, p 71-79




The chromosome end replication: lessons from mitochondrial genetics

Jozef Nosek, Lubomir Tomaska, Blanka Kucejova

Address: Jozef Nosek, Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina CH-1, 842 15 Bratislava, Slovak Republic
nosek@fns.uniba.sk

Received 30th May 2003.
Published online 16th July 2003.

Full text article (pdf)

SUMMARY
The widespread occurrence of linear mitochondrial genomes evokes intriguing questions concerning the evolutionary origin and mechanisms leading to the emergence and stabilization of linear DNA genophores. The study of their replication strategies opens a unique possibility of discovering alternative solutions to the end-replication problem and of elucidating how these mechanisms have appeared in evolution. The analysis of linear mitochondrial genomes in organisms belonging to different phylogenetic lines indicates that their evolutionary emergence was accompanied by the generation of various types of terminal structures, the adaptation of existing replication machinery and by the application of different strategies of the telomere replication. This scenario is illustrated by the molecular anatomy and replication of the linear mitochondrial genome in the opportunist yeast pathogen Candida parapsilosis. Recent studies have revealed the existence of extragenomic minicircular molecules derived from the telomere repeats that seem to participate in the novel pathway of telomere maintenance. Importantly, several lines of evidence indicate that a similar mechanism may also be involved in the alternative, telomerase-independent, maintenance of nuclear telomeres in higher eukaryotes, including human telomerase-negative tumor cells.

KEY WORDS
end-replication problem; linear mitochondrial DNA; telomere; replication; evolution


REFERENCES
Autexier C, Greider CW: Telomerase and cancer: revisiting the telomere hypothesis. Trends Biochem Sci 21:387-391, 1996.

Biessmann H, Mason JM: Telomeric repeat sequences. Chromosoma 103:154-161, 1994.

Biessmann H, Mason JM: Telomere maintenance without telomerase. Chromosoma 106:63-69, 1997.

Bucholc M, Buchowicz J: An extrachromosomal fragment of telomeric DNA in wheat. Plant Mol Biol 27:435-439, 1995.

Cohen S, Lavi S: Induction of circles of heterogeneous sizes in carcinogen-treated cells: two-dimensional gel analysis of circular DNA molecules. Mol Cell Biol 16:2002-2014, 1996.

Cohen S, Mechali M: Formation of extrachromosomal circles from telomeric DNA in Xenopus laevis. EMBO Rep 3:1168-1174, 2002.

Cohen S, Regev A, Lavi S: Small polydispersed circular DNA (spcDNA) in human cells: association with genomic instability. Oncogene 14:977-985, 1997.

Cohn M, Blackburn EH: Telomerase in yeast. Science 269:396-400, 1995.

Dinouel N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H: Linear mitochondrial DNAs of yeasts: closed-loop structure of the termini and possible linear-circular conversion mechanisms. Mol Cell Biol 13:2315-2323, 1993.

Dunham MA, Neumann AA, Fasching CL, Reddel RR: Telomere maintenance by recombination in human cells. Nat Genet 26:447-450, 2000.

Fajkus J, Kovarik A, Kralovics R: Telomerase activity in plant cells. FEBS Lett 391:307-309, 1996.

Fukuhara H, Sor F, Drissi R, Dinouel N, Miyakawa I, Rousset S, Viola AM: Linear mitochondrial DNAs of yeasts: frequency of occurrence and general features. Mol Cell Biol 13:2309-2314, 1993.

Greider CW, Blackburn EH: Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405-413, 1985.

Greider CW, Blackburn EH: The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887-898, 1987.

Greider CW, Blackburn EH: Telomeres, telomerase and cancer. Sci Am 274:92-97, 1996.

Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T: Mammalian telomeres end in a large duplex loop. Cell 97:503-514, 1999.

Hande MP, Balajee AS, Tchirkov A, Wynshaw-Boris A, Lansdorp PM: Extra-chromosomal telomeric DNA in cells from Atm(-/-) mice and patients with ataxia-telangiectasia. Hum Mol Genet 10:519-528, 2001.

Horowitz H, Haber JE: Identification of autonomously replicating circular subtelomeric Y' elements in Saccharomyces cerevisiae. Mol Cell Biol 5:2369-2380, 1985.

Jacob F: Evolution and tinkering. Science 196:1161-1166, 1977.

Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancer. Science 266:2011-2015, 1994.

Louis EJ, Haber JE: The subtelomeric Y' repeat family in Saccharomyces cerevisiae: an experimental system for repeated sequence evolution. Genetics 124:533-545, 1990.

McEachern MJ, Krauskopf A, Blackburn EH: Telomeres and their control. Annu Rev Genet 34:331-358, 2000.

Natarajan S, McEachern MJ: Recombinational telomere elongation promoted by DNA circles. Mol Cell Biol 22:4512-4521, 2002.

Nosek J, Dinouel N, Kovac L, Fukuhara H: Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247:61-72, 1995.

Nosek J, Tomaska L: Mitochondrial telomeres: Alternative solutions to the end-replication problem. In: Krupp G and Parwaresch R (eds) Telomeres, telomerases and cancer. Kluwer Academic/Plenum Publishers, New York, pp. 396-417, 2002.

Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L: Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184-188, 1998.

Nosek J, Tomaska L, Pagacova B, Fukuhara H: Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 274:8850-8857, 1999.

Ogino H, Nakabayashi K, Suzuki M, Takahashi E, Fujii M, Suzuki T, Ayusawa D: Release of telomeric DNA from chromosomes in immortal human cells lacking telomerase activity. Biochem Biophys Res Commun 248:223-227, 1998.

Olovnikov AM: Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201:1496-1499, 1971.

Olovnikov AM: A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181-190, 1973.

Reddel RR: Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett 194:155-162, 2003.

Reddel RR, Bryan TM, Colgin LM, Perrem KT, Yeager TR: Alternative lengthening of telomeres in human cells. Radiat Res 155:194-200, 2001.

Regev A, Cohen S, Cohen E, Bar-Am I, Lavi S: Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. Oncogene 17:3455-3461, 1998.

Shay JW, Wright WE: Telomerase: a target for cancer therapeutics. Cancer Cell 2:257-265, 2002.

Shay JW, Zou Y, Hiyama E, Wright WE: Telomerase and cancer. Hum Mol Genet 10:677-685, 2001.

Tokutake Y, Matsumoto T, Watanabe T, Maeda S, Tahara H, Sakamoto S, Niida H, Sugimoto M, Ide T, Furuichi Y: Extra-chromosomal telomere repeat DNA in telomerase-negative immortalized cell lines. Biochem Biophys Res Commun 247:765-772, 1998.

Tomaska L, Makhov AM, Griffith JD, Nosek J: t-loops in yeast mitochondria. Mitochondrion 1:455-459, 2002.

Tomaska L, Makhov AM, Nosek J, Kucejova B, Griffith JD: Electron microscopic analysis supports a dual role for the mitochondrial telomere-binding protein of Candida parapsilosis. J Mol Biol 305:61-69, 2001.

Tomaska L, Nosek J, Fukuhara H: Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 272:3049-3056, 1997.

Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD: Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucl Acids Res 28:4479-4487, 2000.

Watson JD: Origin of concatemeric T7 DNA. Nat New Biol 239:197-201, 1972.
CITED

Zhang L, Wang X, Qian H, Chi S, Liu C, Liu T. Complete Sequences of the Mitochondrial DNA of the Wild Gracilariopsis lemaneiformis and Two Mutagenic Cultivated Breeds (Gracilariaceae, Rhodophyta). Plos One. 7, Art No: e40241, 2012.

Smith DR, Kayal E, Yanagihara AA, Collins AG, Pirro S, Keeling PJ. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biol Evolution. 4: 52-58, 2012.

Smith DR, Lee RW. Nucleotide Diversity of the Colorless Green Alga Polytomella parva (Chlorophyceae, Chlorophyta): High for the Mitochondrial Telomeres, Surprisingly Low Everywhere Else. J Eukaryotic Microbiol. 58: 471-473, 2011.

Smith DR, Hua JM, Lee RW. Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Gen. 56: 427-438, 2010.

BACK