SUMMARY
We studied the influence of physical activity stress on the circadian rhythms of melatonin and
corticosterone in 3-month old male Wistar rats. Every two hours for 24 h around the clock, an animal
from the stressed group was first made to swim for two hours, and was then subjected to a further ten
minutes of forced swimming using a modification of the apparatus employed in the Porsolt test. The
capacity to resume swimming after the exhausting 2-hour swim was measured by the number of
swimming movements that were made by the animal in the additional 10-min swimming period. Blood
was collected immediately after the trial, and the plasma melatonin and corticosterone levels determined
by RIA. Control group blood was collected at 1-h intervals in the periods from 22:00 to 06:00 and from
16:00 to 18:00, and at 2-h intervals during the remaining periods. The control rats presented plasma
melatonin and corticosterone circadian rhythms with nocturnal (02:00) and diurnal (17:00) maxima,
respectively. The pattern of these rhythms in the stressed rats was flatter, and the animals tested during
hours of the night presented greater endurance than those tested during daytime hours. This suggests that,
in evaluating an animal's response to stress, it is important to take into account the co-ordination between
the time of day when the physical stressing test is applied and the natural sleep/activity periods of the
study species.
KEY WORDS
Melatonin; corticosterone; behaviour; physical activity; stress; rat; circadian rhythms
REFERENCES
Abel EL: Physiological correlates of the forced
swim test in rats. Physiol Behav 54:309-317, 1993a.
Abel EL: Physiological effects of alarm
chemosignal emitted during the forced swim test.
J Chem Ecol 19:2891-2901, 1993b.
Aoyama H, Mori N, Mori W: Anti-glucocorticoid
effects of melatonin on adult rats. Acta Pathol
Jap 37:1143-1148, 1987.
Arendt J: Melatonin and the mammalian pineal
gland. Chapman and Hall, London 1995.
Barriga C, Marchena JM, Lea RW, Harvey S,
Rodriguez AB: Effect of stress and
dexamethasone treatment on circadian rhythms of
melatonin and corticosterone in ring dove
(Streptopelia risoria). Mol Cell Biochem
232:27-31, 2002.
Barriga C, Marchena JM, Ortega E, Martin M,
Rodriguez AB: Melatonin levels and exercise in
adolescent boys and girls. Biogenic Amines
15:643-653, 2000.
Barriga C, Martin MI, Tabla R, Ortega E,
Rodriguez AB: Circadian rhythm of melatonin,
corticosterone and phagocytosis: effect of stress.
J Pineal Res 30:180-187, 2001.
Bartsch C, Bartsch H, Buchberger A et al.: Serial
transplants of DMBA-induced mammary tumors
in Fischer rats as a model system for human
breast cancer. VI. The role of different forms of
tumor-associated stress for the regulation of
pineal melatonin secretion. Oncology 56:169-176, 1999.
Berger J: Why do circadian biorhythms age? J
Appl Biomed 1:77-84, 2003.
Borer KT, Bestervelt LL, Mannheim M et al.:
Stimulation by voluntary exercise of adrenal
glucocorticoid secretion in mature female
hamsters. Physiol Behav 51:713-718, 1992.
Brown GM: Light, melatonin and the sleep-wake
cycle. J Psychiatry Neurosci 19:345-353, 1994.
Bunning E: The Physiological Clock. Springer,
New York 1967.
Buxton OM, L'Hermite-Baleriaux M,
Hirschfeld U, Cauter E: Acute and delayed
effects of exercise on human melatonin secretion.
J Biol Rhythms 12:568-574, 1997.
Carr DB: Plasma melatonin increases during
exercise in women. J Clin Endocrinol Metab
53:224-225, 1981.
Davies KJA, Quintanilha AT, Brooks GA,
Packer L: Free radicals and tissue damage
produced by exercise. Biochem Biophys Res
Comm 107:1198-1205, 1982.
Edery I: Circadian rhythms in a nutshell. Physiol
Genomics 3:59-74, 2000.
Falcon J: Cellular circadian clocks in the pineal.
Prog Neurobiol 58:121-162, 1999.
Feigelson P, Greengard O: Immunochemical
evidence for increased titers of liver tryptophan
pyrrolase during substrate and hormonal enzyme
induction. J Biol Chem 237:3714-3717, 1962.
Ferry A, Weill B, Amiridis I, Laziry F, Rieu M:
Splenic immunomodulation with swimminginduced
stress in rats. Immunol Lett 29:261-264, 1991.
Forner MA, Barriga C, Rodriguez AB,
Ortega E: A study of the role of corticosterone as
a mediator in exercise-induced stimulation of
murine macrophage phagocytosis. J Physiol
488(Pt 3):789-794, 1995.
Freeman BA, Crapo JD: Biology of disease:
Free radicals and tissue injury. Lab Invest
47:412-426, 1982.
Hara M, Abe M, Suzuki T, Reiter RJ: Tissue
changes in glutathione metabolism and lipid
peroxidation induced by swimming are partially
prevented by melatonin. Pharmacol Toxicol
78:308-312, 1996.
Hara M, Iigo M, Ohtani-Kaneko R et al.:
Administration of melatonin and related indoles
prevents exercise-induced cellular oxidative
changes in rats. Biol Signals 6:90-100, 1997.
Jenkins RR: Free radical chemistry. Relation to
exercise. Sports Med 5:156-170, 1988.
Joshi BN, Troiani ME, Milin J, Nurnburger F,
Reiter RJ: Adrenal-mediated depression of Nacetyltransferase
activity and melatonin levels in
the rat pineal gland. Life Sci 38:1573-1580, 1986.
Kelliher P, Connor TJ, Harkin A et al.: Varying
responses to the rat forced-swim test under
diurnal and nocturnal conditions. Physiol Behav
69:531-539, 2000.
Kjaer M, Dela F: Endocrine responses to exercise.
In: Hoffman-Goetz L (ed.), Exercise and immune
function. Boca Raton. CRC, 1-20, 1996.
Lavie P: Sleep-wake as a biological rhythm. Ann
Rev Psychol 52:277-303, 2001.
Lopez-Calderon A: Glandulas suprarrenales. In
Tresguerres JAF (ed.), Fisiologia Humana.
McGraw-Hill - Interamericana, Madrid 1999, pp.
931-951.
Lowestein PR, Pereyra EN, Gonzalez Solveyra
C, Cardinali DP: Effect of naloxone on the
nocturnal rise of rat pineal melatonin conent. Eur
J Pharmacol 98:261-264, 1984.
Luboshitzky R, Yanai D, Shen-Orr Z et al.: Daily
and seasonal variations in the concentration of
melatonin in the human pineal gland. Brain Res
Bull 47:271-276, 1998.
Maestroni GJ: The immunoendocrine role of
melatonin. J Pineal Res 14:1-10, 1993.
Mazepa RC, Cuevas MJ, Collado PS, Gonzalez-Gallego J: Melatonin increases muscle and liver
glycogen content in nonexercised and exercised
rats. Life Sci 66:153-160, 2000.
Miyazaki T, Hashimoto S, Masubuchi S, Honma
S, Honma KI: Phase-advance shifts of human
circadian pacemaker are accelerated by day-time
physical exercise. Am J Physiol Regul Integr
Comp Physiol 281:R197-205, 2001.
Monteleone P, Maj M, Fuschino A, Kemali D:
Physical stress in the middle of the dark phase
does not affect light-depressed plasma melatonin
levels in humans. Neuroendocrinology 55:367-371, 1992.
Monteleone P, Maj M, Fusco M, Orazzo C,
Kemali D: Physical exercise at night blunts the
nocturnal increase of plasma melatonin levels in
healthy humans. Life Sci 47:1989-1995, 1990.
Nomura S, Shimizu J, Kinjo M, Kametani H,
Nakazawa T: A new behavioural test for
antidepressant drugs. Eur J Pharmacol 83:171-175, 1982.
Norris DO: Vertebrate endocrinology. Academic
Press, New York 1997.
Novelli GP, Bracciotti G, Falsini S: Spintrappers
and vitamin E prolong endurance to
muscle fatigue in mice. Free Radic Biol Med
8:9-13, 1990.
Ortega E, Forner MA, Barriga C: Exerciseinduced
stimulation of murine macrophage
chemotaxis: role of corticosterone and prolactin a
mediators. J Physiol 498(Pt 3):729-734, 1997.
Persengiev S, Kanchev L, Vezenkova G:
Circadian patterns of melatonin, corticosterone,
and progesterone in male rats subjected to
chronic stress: effect of constant illumination.
11:57-62, 1991.
Pevet P: Melatonin and biological rhythms. Biol
Signals Recept 9:203-212, 2000.
Plytycz B, Seljelid R: Rhythms of immunity.
Arch Imm Ther Exper (Warsz) 45:157-162, 1997.
Porsolt RD, Anton G, Blavet N, Halfre M:
Behavioural despair in rats: a new model
sensitive to antidepressant treatments. Eur J
Pharmacol 47:379-391, 1978.
Reiter RJ: The melatonin rhythm: both a clock
and a calendar. Experientia 49:654-664, 1993.
Reiter RJ, Richardson BA: Some perturbations
that disturb the circadian melatonin rhythm.
Chronobiol Int 9:314-321, 1992.
Reiter RJ, Tan DX, Poeggeler B, Kavet R:
Inconsistent suppression of nocturnal pineal
melatonin synthesis and serum melatonin levels
in rats exposed to pulsed DC magnetic fields.
Bioelectromagnetics 19:318-329, 1998.
Roberts AC, Martensz ND, Hastings MH,
Herbert J: Changes in photoperiod alter the daily
rhythms of pineal melatonin content and
hypothalamic beta-endorphin content and the
luteinizing hormone response to naloxone in the
male Syrian hamster. Endocrinology 117:141-148, 1985.
Simon HB: Exercise and human immune
functions. In: Arder R, Cohen N, Felten DL
(eds.), Psychoneuroendocrinology. Academic
Press, New York 1991, pp. 869-895.
Simonneaux V, Ribelayga C: Generation of the
melatonin endocrine message in mammals: a
review of the complex regulation of melatonin
synthesis by norepinephrine, peptides, and other
pineal transmitters. Pharmacol Rev 55:325-395, 2003.
Skotnicka E, Hynczak AJ: Melatonin and its
possible role in regulation of water and
electrolyte metabolism. Med Weter 57:299-303, 2001.
Skwarlo-Sonta K: Functional connections between
the pineal gland and immune system. Acta
Neurobiol Exp (Wars) 56:341-357, 1996.
Tannenbaum MG, Reiter RJ, Hurlbut EC et
al.: Pineal sensitivity to nighttime swimming
stress changes during the active season in
Richardson's ground squirrels (Spermophilus
richardsonii). J Exp Zool 250:298-303, 1989.
Theron JJ, Oosthuizen JMC, Rautenbach
MML: Effect of physical exercise on plasma
melatonin levels in normal volunteers. South Afr
Med J 66:838-841, 1984.
Troiani ME, Reiter RJ, Tannenbaum MG et al.:
Neither the pituitary gland nor the sympathetic
nervous system is responsible for eliciting the
large drop in elevated rat pineal melatonin levels
due to swimming. J Neural Transm 74:149-60, 1988a.
Troiani ME, Reiter RJ, Vaughan MK, Oaknin
S, Vaughan GM: Swimming depresses
nighttime melatonin content without changing N-acetyltransferase
activity in the rat pineal gland.
Neuroendocrinology 47:55-60, 1988b.
Turek FW: Circadian rhythms. Recent Prog
Horm Res 49:43-90, 1994.
Urbanski HF: Influence of light and the pineal
gland on biological rhythms. In: Conn PM,
Freeman ME (eds.), Neuroendocrinology in
Physiology and Medicine. Humana Press,
Totowa 2000, pp. 405-420.
Van de Kar LD, Blair ML: Forebrain pathways
mediating stress-induced hormone secretion.
Front Neuroendocrinol 20:1-48, 1999.
Vaughan GM, Pelham RW, Pang SF et al.:
Nocturnal elevation of plasma melatonin and
urinary 5-hydroxindole acetic acid in young men:
Attempts at modification by brief changes in
environmental lighting and sleep by autonomic
drugs. J Clin Endocrinol Metab 42:752-764, 1976.
Venditti P, Di Meo S: Effect of training on
antioxidant capacity, tissue damage, and
endurance of adult male rats. Int J Sports Med
18:497-502, 1997.
Windle RJ, Wood SA, Lightman SL,
Ingram CD: The pulsatile characteristics of
hypothalamo-pituitary-adrenal activity in female
Lewis and Fischer 344 rats and its relationship to
differential stress responses. Endocrinology
139:4044-4052, 1998.
Wu WT, Chen YC, Reiter RJ: Day-night
differences in the response of the pineal gland
swimming stress. Proc Soc Exp Biol Med
187:315-319, 1988.
Yaga K, Tan DX, Reiter RJ, Manchester LC,
Hattori A: Unusual responses of nocturnal pineal
melatonin synthesis and secretion to swimming:
attempts to define mechanisms. J Pineal Res
14:90-103, 1993.
|
CITED
Bogdanova OV, Kanekar S, D'Anci KE, Renshaw PF. Factors influencing behavior in the forced swim test. Physiol Behav. 118: 227-239, 2013.
Escames G, Ozturk G, Bano-Otalora B, Pozo MJ, Madrid JA, Reiter RJ, Serrano E, Concepcion M, Acuna-Castroviejo D. Exercise and melatonin in humans: Reciprocal benefits. J Pineal Res. 52: 1-11, 2012.
Paredes SD, Barriga C, Reiter RJ, Rodriguez AB. Assessment of the potential role of tryptophan as the precursor of serotonin and melatonin for the aged sleep-wake cycle and immune function: Streptopelia risoria as a model. Int J Tryptophan Res. 2: 23-36, 2009.
Mateos SS, Sanchez CL, Paredes SD, Barriga C, Rodriguez AB. Circadian levels of serotonin in plasma and brain after oral administration of tryptophan in rats. Basic Clin Pharm Toxicol 104: 52-59, 2009.
Habibi A, Nikbakht M, Shakerian S, Ketabi S. Investigate and Compare the Effect of One Session Wrestling Training on Elite Wrestlers Dehydration, Hematocrit and Blood Electrolytes in the Morning and Evening. Proc First Join Int Pre-Olympic Conference Sports Sci Sports Eng, Vol II - Bio-Mech Sports Eng pp. 21-24, 2008.
Sanchez S, Sanchez CL, Paredes SD, Rodriguez AB, Barriga C. The effect of tryptophan administration on the circadian rhythms of melatonin in plasma and the pineal gland of rats. J Appl Biomed. 6: 177-186, 2008.
Sanchez S, Paredes SD, Sanchez CL, Barriga C, Reiter RJ, Rodriguez AB. Tryptophan administration in rats enhances phagocytic function and reduces oxidative metabolism. Neuroindocrinol Lett. 29: 1026-1032, 2008.
Paredes SD, Terron MP, Valero V, Barriga C, Reiter RJ, Rodriguez AB. Orally administered melatonin improves nocturnal rest in young and old ringdoves (Streptopelia risoria). Basic Clin Pharm Toxicol. 100: 258-268, 2007.
Paredes SD, Sanchez S, Parvez H, Rodriguez AB, Barriga C. Altered circadian rhythms of corticosterone, melatonin, and phagocytic activity in response to stress in rats. Neuroindocrinol Lett. 28: 489-495, 2007.
Paredes SD, Sanchez S, Parvez H, Rodriguez AB, Barriga C. Altered circadian rhythms of corticosterone, melationin, and phagocytic activity in response to stress in rats. Biog Amines. 21: 101-112, 2007.
Paredes SD, Terron MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB. Effect of exogenous melatonin on viability, ingestion capacity, and free-radical scavenging in heterophils from young and old ringdoves (Streptopelia risoria). Mol Cell Biochem. 304: 305-314, 2007.
Paredes SD, Terron MP, Marchena AM, Barriga C, Pariente JA, Reiter RJ, Rodriguez AB. Tryptophan modulates cell viability, phagocytosis and oxidative metabolism in old ringdoves. Basic Clin Pharm Toxicol. 101: 56-62, 2007.
|