Nacházíte se zde: Úvod > Journal of Applied Biomedicine > 3_4 > michalak.htm

michalak.htm

Journal of APPLIED BIOMEDICINE
ISSN 1214-0287 (on-line)
ISSN 1214-021X (printed)

Volume 3 (2005), No 4, p 159-165




Endoplasmic reticulum quality control and congenital pathology

Marek Michalak

Address: Marek Michalak, Department of Biochemistry, University of Alberta, 3-56 Medical Sciences Building, Edmotnon, Alberta, Canada T6G 2H7
marek.michalak@ualberta.ca

Received 6th December 2005.
Published online 12th October 2005.

Full text article (pdf)

SUMMARY
Quality control of the endoplasmic reticulum plays a critical role in protein folding, modification and modification of a secretory pathway. As endoplasmic reticulum chaperones, calreticulin and calnexin have similar substrate specificity and share several common features. Yet, surprisingly, mice bearing a disruption in the calreticulin gene die from a lesion in cardiac development and develop significant metabolic problems whereas calnexin-deficient mice are born alive with, yet not understood, neurological problems. Studies with calreticulin and calnexin gene knockout mice and calreticulin- and calnexindeficient cell lines indicate that calnexin is unable to compensate for the loss of calreticulin and conversely, calreticulin cannot compensate for the loss of calnexin. Calreticulin or calnexin deficiency or reduction in the level of ERp57 protein (ERp57 heterozygote mice) leads to development of metabolic disorders as documented by sever changes serum lipids and carbohydrates composition in these animals. These observations indicate that calreticulin, calnexin and ERp57, in addition of being involved in maturation of glycoproteins in the endoplasmic reticulum, perform other distinct functions including affecting energy metabolism.

KEY WORDS
endoplasmic reticulum; calreticulin; calnexin; chaperones; lipid metabolism


REFERENCES
Arnaudeau S, Frieden M, Nakamura K et al.: Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria: J Biol Chem 277:46696-46705, 2002.

Baumann O, Walz B: Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int Rev Cytol 205:149-214, 2001.

Bergeron JJM, Brenner MB, Thomas DY, Williams DB: Calnexin: a membrane-bound chaperone of the endoplasmic reticulum. Trends Biochem Sci 19:124-128, 1994.

Burns K, Michalak M: Interactions of calreticulin with proteins of the endoplasmic and sarcoplasmic reticulum membranes. FEBS Lett 318:181-185, 1993.

Camacho P, Lechleiter JD: Calreticulin inhibits repetitive intracellular Ca2+ waves. Cell 82:765-771, 1995.

Corbett EF, Michalak M: Calcium, a signaling molecule in the endoplasmic reticulum? Trends Biochem Sci 25:307-311, 2000.

Corbett EF, Michalak KM, Oikawa K et al.: The conformation of calreticulin is influenced by the endoplasmic reticulum lumenal environment. J Biol Chem 275:27177-27185, 2000.

D'Alessio C, Fernandez F, Trombetta ES, Parodi AJ: Genetic evidence for the heterodimeric structure of glucosidase II. The effect of disrupting the subunit-encoding genes on glycoprotein folding. J Biol Chem 274:25899-25905, 1999.

Dedhar S: Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci 19:269-271, 1994.

Denzel A, Molinari M, Trigueros C, Martin JE, Velmurgan S, Brown S, Stamp G, Owen MJ: Early postnatal death and motor disorders in mice congenitally deficient in calnexin expression. Mol Cell Biol 22:7398-7404, 2002.

Ellgaard L, Molinari M, Helenius A: Setting the standards: quality control in the secretory pathway. Science 286:1882-1888, 1999.

Fadel MP, Dziak E, Lo CM et al.: Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J Biol Chem 274:15085-15094, 1999.

Fadel MP, Szewczenko-Pawlikowski M, Leclerc P et al.: Calreticulin affects beta-catenin associated pathways: J Biol Chem 276:27083-27089, 2001.

Gething MJ: Role and regulation of the ER chaperone BiP. Sem Cell Dev Biol 10:465-472, 1999.

Guo L, Nakamura K, Lynch J et al.: Cardiacspecific expression of calcineurin reverses embryonic lethality in calreticulin-deficient mouse. J Biol Chem 277:50776-50779, 2002.

High S, Lecomte FJ, Russell SJ et al.: Glycoprotein folding in the endoplasmic reticulum: a tale of three chaperones? FEBS Lett 476:38-41, 2000.

Holaska JM, Black BE, Love DC et al.: Calreticulin is a receptor for nuclear export. J Cell Biol 152:127-140, 2001.

Jakob CA, Chevet E, Thomas DY, Bergeron JJ: Lectins of the ER quality control machinery. Cell Differ 33:1-17, 2001.

Kapoor M, Srinivas H, Kandiah E et al.: Interactions of substrate with calreticulin, an endoplasmic reticulum chaperone. J Biol Chem 278:6194-6200, 2003.

Knee R, Ahsan I, Mesaeli N et al.: Compromised calnexin function in calreticulin deficient cells. Biochem Biophys Res Commun 304:661-666, 2003.

Li J, Puceat M, Perez-Terzic C et al.: Calreticulin reveals a critical Ca2+ checkpoint in cardiac myofibrillogenesis. J Cell Biol 158:103-113, 2002.

Meldolesi J, Pozzan T: The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10-14, 1998.

Mesaeli N, Phillipson C: Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol Biol Cell 15:1862-1870, 2004.

Mesaeli N, Nakamura K, Zvaritch E et al.: Calreticulin is essential for cardiac development. J Cell Biol 144:857-868, 1999.

Michalak M, Corbett EF, Mesaeli N et al.: Calreticulin: one protein, one gene, many functions. Biochem J 344:281-292, 1999.

Michalak M, Parker JMR, Opas M: Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32:269-278, 2002.

Molinari M, Helenius A: Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331-333, 2000.

Molinari M, Eriksson KK, Calanca V et al.: Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 13:125-135, 2004.

Muller-Taubenberger A, Lupas AN, Li H et al.: Calreticulin and calnexin in the endoplasmic reticulum are important for phagocytosis. EMBO J 20:6772-6782, 2001.

Nakamura K, Bossy-Wetzel E, Burns K et al.: Changes in endoplasmic reticulum luminal environment affect cell sensitivity to apoptosis. J Cell Biol 150:731-740, 2000.

Nakamura K, Zuppini A, Arnaudeau S et al.: Functional specialization of calreticulin domains. J Cell Biol 154:961-972, 2001.

Nauseef WM, McCormick SJ, Clark RA: Calreticulin functions as a molecular chaperone in the biosynthesis of myeloperoxidase. J Biol Chem 270:4741-4747, 1995.

Nicchitta CV: Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr Opin Immunol 10:103-109, 1998.

Opas M, Szewczenko-Pawlikowski M, Jass GK et al.: Calreticulin modulates cell adhesiveness via regulation of vinculin expression. J Cell Biol 135:1913-1923, 1996.

Parlati F, Dignard D, Bergeron JJM, Thomas DY: The calnexin homologue cnx1+ in Schizosaccharomyces pombe, is an essential gene which can be complemented by its soluble ER domain. EMBO J 14:3064-3072, 1995a.

Parlati F, Dominguez M, Bergeron JJM, Thomas DY: Saccharomyces cerevisiae CNE1 encodes an endoplasmic reticulum (ER) membrane protein with sequence similarity to calnexin and calreticulin and functions as a constituent of the ER quality control apparatus. J Biol Chem 270:244-253, 1995b.

Roderick HL, Lechleiter JD, Camacho P: Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J Cell Biol 149:1235-1248, 2000.

Rusnak F, Mertz P: Calcineurin: form and function. Physiol Rev 80:1483-1521, 2000.

Russell SJ, Ruddock LW, Salo KEH et al.: The primary substrate binding site in the b' domain of ERp57 is adapted for endoplasmic reticulum lectin association. J Biol Chem 279:18861-18869, 2004.

Saito Y, Ihara Y, Leach MR et al.: Calreticulin functions in vitro as a molecular chaperone for both glycosylated and non-glycosylated proteins. EMBO J 18:6718-6729, 1999.

Scott JE, Dawson JR: MHC class I expression and transport in a calnexin-deficient cell line. J Immunol 155:143-148, 1995.

Silvennoinen L, Myllyharju J, Ruoppolo M et al.: Identification and characterization of structural domains of human ERp57 - association with calreticulin requires several domains. J Biol Chem 279:13607-1361, 2004.

Trombetta ES: The contribution of N-glycans and their processing in the endoplasmic reticulum to glycoprotein biosynthesis. Glycobiology 13:77-91, 2003.

Trombetta ES, Parodi AJ: Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649-676, 2003.

Wada I, Rindress D, Cameron PH et al.: SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J Biol Chem 266:19599-19610, 1991.

Xu K, Tavernarakis N, Driscoll M: Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca2+ release from the endoplasmic reticulum. Neuron 31:957-971, 2001.

Zapun A, Darby NJ, Tessier DC et al.: Enhanced catalysis of ribonuclease B folding by the interaction of calnexin or calreticulin with ERp57. J Biol Chem 273:6009-6012, 1998.

Zapun A, Jakob CA, Thomas DY, Bergeron JJM: Protein folding in a specialized compartment: the endoplasmic reticulum. Structure Fold Des 7:R173-R182, 1999.

Zuppini A, Groenendyk J, Cormack LA et al.: Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis: Biochemistry 41:2850-2858, 2002.
CITED

0

BACK