SUMMARY Streptococcus pneumoniae is the main cause of community acquired pneumonia and also produces meningitis, bacteremia, and otitis media, among others. Worldwide, these infections are the cause of substantial morbidity and mortality. Many different virulence factors have been described and most of them are surface-located macromolecules, namely, the capsular polysaccharide and various pneumococcal proteins. Cell wall hydrolases (CWHs) specifically cleave covalent bonds of the peptidoglycan and associated polymers: most CWHs are choline-binding proteins (CBPs) and are among the most well-known surface proteins. Pneumococcal CBPs have been investigated due to their role in pathogenesis and as candidate antigens for improved vaccines. Among the complex host-parasite interactions characteristic of pneumococcal disease, nasopharyngeal colonization is the first step. CBPs appear to play a central role in the development of the carrier state, possibly by affecting biofilm formation and development. Although the role of biofilms in the pathogenesis of some chronic human infections is currently widely accepted, the molecular bases underlying the formation of pneumococcal biofilms are being only recently being studied. Among therapeutic strategies to combat multidrug-resistant pneumococcal infections, the use of purified phage- or bacteria-encoded CWHs both in vitro and in animal models is under investigation.
KEY WORDS
Pneumococcus; cell wall hydrolases; choline; phage therapy; biofilm; enzybiotics
REFERENCES
Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K: Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol 188:2325-2335, 2006.
Bogaert D, de Groot R, Hermans PWM: Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect Dis 4:144-154, 2004.
Claverys J-P, Havarstein LS: Cannibalism and fratricide: mechanisms and raisons d'etre. Nat Rev Microbiol 5:219-229, 2007.
Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI: Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435-438, 1995.
Dagan R: Serotype replacement in perspective. Vaccine 27:C22-C24, 2009.
Domenech M, Garcia E, Moscoso M: Versatility of the capsular genes during biofilm formation by Streptococcus pneumoniae. Environ Microbiol 11:2542-2555, 2009.
Fernandez-Tornero C, Lopez R, Garcia E, Gimenez-Gallego G, Romero A: A novel solenoid fold in the cell wall anchoring domain of the pneumococcal virulence factor LytA. Nat Struct Biol 8:1020-1024, 2001.
Garcia P, Garcia JL, Lopez R, Garcia E: Pneumococcal phages. In Waldor MK, Friedman DLI, Adhya S (ed.): Phages: Their Role in Bacterial Pathogenesis and Biotechnology, ASM Press, Washington, D.C. 2005, pp. 335-361.
Gonzalez A, Llull D, Morales M, Garcia P, Garcia E: Mutations in the tacF gene of clinical strains and laboratory transformants of Streptococcus pneumoniae: impact on choline auxotrophy and growth rate. J Bacteriol 190:4129-4138, 2008.
Hermoso JA, Lagartera L, Gonzalez A, Stelter M, Garcia P, Martinez-Ripoll M, Garcia JL, Menendez M: Insights into pneumococcal pathogenesis from the crystal structure of the modular teichoic acid phosphorylcholine esterase Pce. Nat Struct Mol Biol 12:533-538, 2005.
Hermoso JA, Garcia JL, Garcia P: Taking aim on bacterial pathogens: from phage therapy to enzybiotics. Curr Opin Microbiol 10:461-472, 2007.
Hernandez-Rocamora VM, Maestro B, de Waal B, Morales M, Garcia P, Meijer EW, Merkx M, Sanz JM: Multivalent choline dendrimers as potent inhibitors of pneumococcal cell-wall hydrolysis. Angew Chem Int Ed Engl 48:948-951, 2009.
Hoa M, Tomovic S, Nistico L, Hall-Stoodley L, Stoodley P, Sachdeva L, Berk R, Coticchia JM: Identification of adenoid biofilms with middle ear pathogens in otitis-prone children utilizing SEM and FISH. Int J Pediatr Otorhinolaryngol 73:1242-1248, 2009.
Kharat AS, Tomasz A: Drastic reduction in the virulence of Streptococcus pneumoniae expressing type 2 capsular polysaccharide but lacking choline residues in the cell wall. Mol Microbiol 60:93-107, 2006.
Llull D, Lopez R, Garcia E: Skl, a novel choline-binding N-acteylmuramoyl-L-alanine amidase of Streptococcus mitis SK137 containing a CHAP domain. FEBS Lett 580:1959-1964, 2006.
Lopez R: Pneumococcus: the sugar-coated bacteria. Int Microbiol 9:179-190, 2006.
Lopez R, Garcia E: Recent trends on the molecular biology of pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol Rev 28:553-580, 2004.
Lopez R, Garcia E, Garcia P: Enzymes for anti-infective therapy: phage lysins. Drug Discov Today Ther Strateg 1:469-474, 2004a.
Lopez R, Garcia E, Garcia P, Garcia JL: Cell wall hydrolases. In Tuomanen EI, Mitchell TJ, Morrison DA, Spratt BG (ed.): The Pneumococcus, ASM Press, Washington, D.C. 2004b, pp. 75-88.
Maestro B, Sanz JM: Novel approaches to fight Streptococcus pneumoniae. Recent Pat Antiinfect Drug Discov 2:188-196, 2007.
Maestro B, Gonzalez A, Garcia P, Sanz JM: Inhibition of pneumococcal choline-binding proteins and cell growth by esters of bicyclic amines. FEBS J 274:364-376, 2007.
Maestro B, Velasco I, Castillejo I, Arevalo-Rodriguez M, Cebolla A, Sanz JM: Affinity partitioning of proteins tagged with choline-binding modules in aqueous two-phase systems. J Chromatogr A 1208:189-196, 2008.
Moldes C, Garcia JL, Garcia P: Construction of a chimeric thermostable pyrophosphatase to facilitate its purification and immobilization by using the choline-binding tag. Appl Environ Microbiol 70:4642-4647, 2004.
Molina R, Gonzalez A, Stelter M, Perez-Dorado I, Kahn R, Morales M, Moscoso M, Campuzano S, Campillo NE, Mobashery S, Garcia JL, Garcia P, Hermoso JA: Crystal structure of CbpF, a bifunctional choline-binding protein and autolysis regulator from Streptococcus pneumoniae. EMBO Rep 10:246-251, 2009.
Moscoso M, Garcia E: Transcriptional regulation of the capsular polysaccharide biosynthesis locus of Streptococcus pneumoniae: a bioinformatic analysis. DNA Res 16:177-186, 2009.
Moscoso M, Garcia E, Lopez R: Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol 188:7785-7795, 2006.
Moscoso M, Garcia E, Lopez R: Pneumococcal biofilms. Int Microbiol 12:77-85, 2009.
Munoz-Elias EJ, Marcano J, Camilli A: Isolation of Streptococcus pneumoniae biofilm mutants and their characterization during nasopharyngeal colonization. Infect Immun 76:5049-5061, 2008.
O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, Lee E, Mulholland K, Levine OS, Cherian T, for the Hib and Pneumococcal Global Burden of Disease Study Team: Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374:893-902, 2009.
O'Flaherty S, Ross RP, Coffey A: Bacteriophage and their lysins for elimination of infectious bacteria. FEMS Microbiol Rev 33:801-819, 2009.
Perez-Dorado I, Gonzalez A, Morales M, Sanles R, Striker W, Vollmer W, Mobashery S, Garcia JL, Martinez-Ripoll M, Garcia P, Hermoso JA: Insights into pneumococcal fratricide from crystal structure of the modular killing factor LytC. Nat Struct Mol Biol 17:576-581, 2010.
Rodriguez-Cerrato V, Garcia P, del Prado G, Garcia E, Gracia M, Huelves L, Ponte C, Lopez R, Soriano F: In vitro interactions of LytA, the major pneumococcal autolysin, with two bacteriophage lytic enzymes (Cpl-1 and Pal), cefotaxime and moxifloxacin against antibiotic-susceptible and - resistant Streptococcus pneumoniae strains. J Antimicrob Chemother 60:1159-1162, 2007a.
Rodriguez-Cerrato V, Garcia P, Huelves L, Garcia E, del Prado G, Gracia M, Ponte C, Lopez R, Soriano F: Pneumococcal LytA autolysin, a potent therapeutic agent in experimental peritonitis-sepsis caused by highly beta-lactam-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 51:3371-3373, 2007b.
Romero P, Lopez R, Garcia E: Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae. J Biol Chem 282:17729-17737, 2007.
Romero P, Garcia E, Mitchell TJ: Development of a prophage typing system and analysis of prophage carriage in Streptococcus pneumoniae. Appl Environ Microbiol 75:1643-1649, 2009a.
Romero P, Croucher NJ, Hiller L, Hu FZ, Ehrlich GD, Bentley SD, Garcia E, Mitchell TJ: Comparative genomic analysis of 10 Streptococcus pneumoniae temperate bacteriophages. J Bacteriol 191:4854-4862, 2009b.
Sanchez-Puelles JM, Sanz JM, Garcia JL, Garcia E: Immobilization and single-step purification of fusion proteins using DEAE-cellulose. Eur J Biochem 203:153-159, 1992.
Scott JAG, Brooks WA, Peiris JSM, Holtzman D, Mulhollan EK: Pneumonia research to reduce childhood mortality in the developing world. J Clin Invest 118:1291-1300, 2008.
van der Poll T, Opal SM: Host-pathogen interactions in sepsis. Lancet Infect Dis 8:32-43, 2008.
Witzenrath M, Schmeck B, Doehn JM, Tschernig T, Zahlten J, Loeffler JM, Zemlin M, Muller H, Gutbier B, Schutte H, Hippenstiel S, Fischetti VA, Suttorp N, Rosseau S: Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med 37:642-649, 2009.
Yuste J, Botto M, Paton JC, Holden DW, Brown JS: Additive inhibition of complement deposition by pneumolysin and PspA facilitates Streptococcus pneumoniae septicemia. J Immunol 175:1813-1819, 2005.
Yuste J, Botto M, Bottoms SE, Brown JS: Serum amyloid P aids complement-mediated immunity to Streptococcus pneumoniae. PLoS Pathog 3:e120, 2007.
Zhang Z, Li W, Frolet C, Bao R, di Guilmi A-M, Vernet T, Chen Y: Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae. Acta Crystallogr Section F Struct Biol Crystall Commun 65:757-761, 2009.
|
CITED
Berger J. The age of biomedicine: current trends in traditional subjects. J Appl Biomed. 9: 57-61, 2011.
Sabri M, Hauser R, Ouellette M, Liu J, Dehbi M, Moeck G, Garcia E, Titz B, Uetz P, Moineau S. Genome Annotation and Intraviral Interactome for the Streptococcus pneumoniae Virulent Phage Dp-1. J Bacteriol. 193: 551-562, 2011.
Maestro B, Santiveri CM, Jimenez MA, Sanz JM. Structural autonomy of a beta-hairpin peptide derived from the pneumococcal choline-binding protein LytA. Protein Eng Des Sel. 24: 113-122, 2011.
|