Obsah souboru
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Publisher PUBLIC "-//MetaPress//DTD MetaPress 2.0//EN" "http://public.metapress.com/dtd/MPRESS/MetaPressv2.dtd">
<Publisher>
<PublisherInfo>
<PublisherName>University of South Bohemia, Ceske Budejovice and Versita, Warsaw</PublisherName>
</PublisherInfo>
<Journal>
<JournalInfo JournalType="Journals">
<JournalPrintISSN>1214-021X</JournalPrintISSN>
<JournalElectronicISSN>1214-0287</JournalElectronicISSN>
<JournalTitle>Journal of Applied Biomedicine</JournalTitle>
<JournalCode>JAB</JournalCode>
<JournalID>121649</JournalID>
<JournalURL>http://versita.metapress.com/link.asp?target=journal&id=121649</JournalURL>
</JournalInfo>
<Volume>
<VolumeInfo>
<VolumeNumber>8</VolumeNumber>
</VolumeInfo>
<Issue>
<IssueInfo IssueType="Regular">
<IssueNumberBegin>4</IssueNumberBegin>
<IssueNumberEnd>4</IssueNumberEnd>
<IssueSupplement>0</IssueSupplement>
<IssuePartStart>0</IssuePartStart>
<IssuePartEnd>0</IssuePartEnd>
<IssueSequence>000008000420101201</IssueSequence>
<IssuePublicationDate>
<CoverDate Year="2010" Month="12" Day="1"/>
<CoverDisplay>Number 4 / December 2010</CoverDisplay>
</IssuePublicationDate>
<IssueID>X007M0269144</IssueID>
<IssueURL>http://versita.metapress.com/link.asp?target=issue&id=X007M0269144</IssueURL>
</IssueInfo>
<Article ArticleType="Original">
<ArticleInfo Free="No" ESM="No">
<ArticleDOI>10.2478/v10136-009-0026-4</ArticleDOI>
<ArticlePII>H4N6227452613TW0</ArticlePII>
<ArticleSequenceNumber>2</ArticleSequenceNumber>
<ArticleTitle Language="En">Temperature-perception, molecules and mechanisms</ArticleTitle>
<ArticleFirstPage>189</ArticleFirstPage>
<ArticleLastPage>198</ArticleLastPage>
<ArticleHistory>
<RegistrationDate>20101116</RegistrationDate>
<ReceivedDate>20101116</ReceivedDate>
<Accepted>20101116</Accepted>
<OnlineDate>20101116</OnlineDate>
</ArticleHistory>
<FullTextFileName>H4N6227452613TW0.pdf</FullTextFileName>
<FullTextURL>http://versita.metapress.com/link.asp?target=contribution&id=H4N6227452613TW0</FullTextURL>
<Composite>4</Composite>
</ArticleInfo>
<ArticleHeader>
<AuthorGroup>
<Author AffiliationID="A1">
<GivenName>Rafael</GivenName>
<Initials/>
<FamilyName>Catalá</FamilyName>
<Degrees/>
<Roles/>
</Author>
<Author AffiliationID="A1">
<GivenName>Julio</GivenName>
<Initials/>
<FamilyName>Salinas</FamilyName>
<Degrees/>
<Roles/>
</Author>
<Affiliation AFFID="A1">
<OrgDivision/>
<OrgName>Department of Environmental Biology, Centro de Investigaciones Biológicas (CIB - CSIC), Madrid, Spain</OrgName>
<OrgAddress/>
</Affiliation>
</AuthorGroup>
<Abstract Language="En">The strategies used by living organisms to survive under low and freezing temperatures reveal the extraordinary adaptability of life on Earth. Understanding the molecular mechanisms underlying cold adaptation and freezing survival will provide new insights into the existing relationships between living organisms and their environment, and the possibility of developing multiple biotechnological applications. In the case of plants, the use of classical genetic and new "omics" approaches is allowing to the identification of new elements involved in regulating the cold acclimation response. The challenge ahead is to determine temperature-perception molecules and mechanisms, to uncover new internodes of multiple responses, and to integrate the regulation not only at the transcriptome but also at proteome and metabolome levels. Attaining these goals will significantly contribute global understanding of the adaptive strategies plants have evolved to cope with hostile environmental conditions, and to the development of biotechnological strategies to improve crop tolerance to freezing and other important abiotic stresses.</Abstract>
<KeywordGroup Language="En">
<Keyword>Arabidopsis</Keyword>
</KeywordGroup>
<KeywordGroup Language="En">
<Keyword>low temperature response</Keyword>
</KeywordGroup>
<KeywordGroup Language="En">
<Keyword>cold acclimation</Keyword>
</KeywordGroup>
<KeywordGroup Language="En">
<Keyword>freezing tolerance</Keyword>
</KeywordGroup>
<KeywordGroup Language="En">
<Keyword>cold signalling</Keyword>
</KeywordGroup>
<biblist>
<bib-other>
<bibtext seqNum="1"> Abarca D, Madueño F, Martínez-Zapater JM, Salinas J: Dimerization of <i>Arabidopsis</i> 14-3-3 proteins: structural requirements within the N-terminal domain and effect of calcium. FEBS Lett 462:377-382, 1999.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="2"> Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK: A R2R3 type MYB transcription factor is involved in the cold regulation of <i>CBF</i> genes and in acquired freezing tolerance. J Biol Chem 281:37636-37645, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="3"> Aguilar PS, Cronan JE, Jr., de Mendoza D: A <i>Bacillus subtilis</i> gene induced by cold shock encodes a membrane phospholipids desaturase. J Bacteriol 180:2194-2200, 1998.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="4"> Alboresi A, Ballottari M, Hienerwadel R, Giacometti GM, Morosinotto T: Antenna complexes protect Photosystem I from photoinhibition. BMC Plant Biol 9:article 71. 2009.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="5"> Alonso-Blanco C, Gomez-Mena C, Llorente F, Koornneef M, Salinas J, Martínez-Zapater JM: Genetic and molecular analyses of natural variation indicate <i>CBF2</i> as a candidate gene for underlying a freezing tolerance quantitative trait locus in <i>Arabidopsis</i>. Plant Physiol 139:1304-1312, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="6"> Capel J, Jarillo JA, Salinas J, Martínez-Zapater JM: Two homologous low-temperature-inducible genes from <i>Arabidopsis</i> encode highly hydrophobic proteins. Plant Physiol 115:569-576, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="7"> Capel J, Jarillo JA, Madueño F, Jorquera MJ, Martínez-Zapater JM, Salinas J: Low temperature regulates <i>Arabidopsis Lhcb</i> gene expression in a light-independent manner. Plant J 13:411-418, 1998.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="8"> Catalá R, Salinas J: Regulatory mechanisms involved in cold acclimation response. Span J Agric Res 6:211-220, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="9"> Catalá R, Santos E, Alonso JM, Ecker JR, Martínez-Zapater JM, Salinas J: Mutations in the Ca<sup>2+</sup>/H<sup>+</sup> transporter CAX1 increase <i>CBF/DREB1</i> expression and the cold-acclimation response in <i>Arabidopsis</i>. Plant Cell 15:2940-2951, 2003.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="10"> Chen TH, Gusta LV: Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol 73:71-75, 1983.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="11"> Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK: ICE1: a regulator of cold-induced transcriptome and freezing tolerance in <i>Arabidopsis</i>. Genes Dev 17:1043-1054, 2003.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="12"> Christie PJ, Hahn M, Walbot V: Low-temperature accumulation of alcohol dehydrogenase-1 mRNA and protein activity in maize and rice seedlings. Plant Physiol 95:699-706, 1991.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="13"> Christie PJ, Alfenito MR, Walbot V: Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549, 1994.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="14"> Cossins AR: Temperature Adaptation in Biological Membranes. Portland Press, London 1994, pp. 63-76.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="15"> Fowler S, Thomashow MF: <i>Arabidopsis</i> transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675-1690, 2002.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="16"> Fursova OV, Pogorelko GV, Tarasov VA: Identification of <i>ICE2</i>, a gene involved in cold acclimation which determines freezing tolerance in <i>Arabidopsis thaliana</i>. Gene 15:98-103, 2009.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="17"> Gilmour SJ, Thomashow MF: Cold acclimation and cold-regulated gene expression in ABA mutants of <i>Arabidopsis thaliana</i>. Plant Mol Biol 17:1233-1240, 1991.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="18"> Gilmour SJ, Zarka DG, Stockinger EJ, Salazar MP, Houghton JM, Thomashow MF: Low temperature regulation of the <i>Arabidopsis</i> CBF family of AP2 transcriptional activators as an early step in cold-induced <i>COR</i> gene expression. Plant J 16:433-442, 1998.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="19"> Gilmour SJ, Fowler SG, Thomashow MF: Arabidopsis transcriptional activators CBF1, CBF2, and CBF3 have matching functional activities. Plant Mol Biol 54:767-781, 2004.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="20"> Gocheva YG, Tosi S, Krumova ET, Slokoska LS, Miteva JG, Vassilev SV, Angelova MB: Temperature downshift induces antioxidant response in fungi isolated from Antarctica. Extremophiles 13:273-281, 2009.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="21"> Gray GR, Chauvin LP, Sarhan F, Huner N: Cold acclimation and freezing tolerance (A complex interaction of light and temperature). Plant Physiol 114:467-474, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="22"> Harvaux M, Kloppstech K: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in <i>Arabidopsis npq</i> and <i>tt</i> mutants. Planta 213:953-966, 2001.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="23"> Hayward SAL, Murray PA, Gracey AY, Cossins AR: Beyond the lipid hypothesis: Mechanisms underlying plasticity in inducible cold tolerance. Adv Exp Med Biol 594:132-142, 2007.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="24"> Heino P, Sandman G, Lang V, Nordin K, Palva ET: Abscisic acid deficiency prevents development of freezing tolerance in <i>Arabidopsis thaliana</i> (L.) Heynh. Theor Appl Genet 79:801-806, 1990.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="25"> Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR: CAX1, an H<sup>+</sup>/Ca<sup>2+</sup> antiporter from <i>Arabidopsis</i>. Proc Natl Acad Sci USA 93:8782-8786, 1996.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="26"> Ishitani M, Xiong L, Stevenson B, Zhu JK: Genetic analysis of osmotic and cold stress signal transduction in <i>Arabidopsis</i>: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9:1935-1949, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="27"> Jarillo JA, Leyva A, Salinas J, Martínez-Zapater JM: Low temperature induces the accumulation of alcohol dehydrogenase mRNA in <i>Arabidopsis thaliana</i>, a chilling-tolerant plant. Plant Physiol 101:833-837, 1993.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="28"> Jarillo JA, Capel J, Leyva A, Martínez-Zapater JM, Salinas J: Two related low-temperature-inducible genes of <i>Arabidopsis</i> encode proteins showing high homology to 14-3-3 proteins, a family of putative kinase regulators. Plant Mol Biol 25:693-704, 1994.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="29"> Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287-291, 1999.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="30"> Kawamura Y, Uemura M: Mass spectrometric approach for identifying putative plasma membrane proteins of <i>Arabidopsis</i> leaves associated with cold acclimation. Plant J 36:141-154, 2003.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="31"> Knight H: Calcium signalling during abiotic stress in plants. Int Rev Cytol 195:269-324, 2000.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="32"> Krol M, Ivanov AG, Jansson S, Kloppstech K, Huner NP: Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the chlorina <i>f2</i> mutant. Plant Physiol 120:193-204, 1999.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="33"> Lang V, Heino P, Palva ET: Low temperature acclimation and treatment with exogenous abscisic acid induce common polypeptides in <i>Arabidopsis thaliana</i> (L.) Heinh. Theor Appl Genet 77:729-734, 1989.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="34"> Lee BH, Henderson DA, Zhu JK: The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155-3175, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="35"> Levitt J: Responses of Plants to Environmental Stresses: Chilling, Freezing and High Temperatures Stresses. Academic Press, New York, 1980.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="36"> Leyva A, Jarillo JA, Salinas J, Martínez-Zapater JM: Low temperature induces the accumulation of phenylalanine ammonia-lyase and chalcone synthase mRNAs of <i>Arabidopsis thaliana</i> in a light-dependent manner. Plant Physiol 108:39-46, 1995.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="37"> Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in <i>Arabidopsis</i>. Plant Cell 10:1391-1406, 1998.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="38"> Llorente F, Oliveros JC, Martínez-Zapater JM, Salinas J: A freezing-sensitive mutant of <i>Arabidopsis, frs1</i>, is a new <i>aba3</i> allele. Planta 211:648-655, 2000.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="39"> Llorente F, López-Cobollo RM, Catalá R, Martínez-Zapater JM, Salinas J: A novel cold-inducible gene from <i>Arabidopsis, RCI3</i>, encodes a peroxidase that constitutes a component for stress tolerance. Plant J 32:13-24, 2002.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="40"> Mancinelli AL: Photoregulation of anthocyanin synthesis: VIII. Effect of light pretreatments. Plant Physiol 75:447-453, 1984.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="41"> Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M: <i>Arabidopsis</i> transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49:1135-1149, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="42"> Mazzucotelli E, Belloni S, Marone D, De Leonardis A, Guerra D, Di Fonzo N, Cattivelli L, Mastrangelo A: The <i>E3</i> ubiquitin ligase gene family in plants: regulation by degradation. Current Genomics 7:509-522, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="43"> Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J: The <i>Arabidopsis CBF</i> gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119:463-470, 1999.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="44"> Medina J, Catalá R, Salinas J: Developmental and stress regulation of <i>RCI2A</i> and <i>RCI2B</i>, two cold-inducible genes of <i>Arabidopsis</i> encoding highly conserved hydrophobic proteins. Plant Physiol 125:1655-1666, 2001.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="45"> Medina J, Rodríguez-Franco M, Peñalosa A, Carrascosa MJ, Neuhaus G, Salinas J: <i>Arabidopsis</i> mutants deregulated in <i>RCI2A</i> expression reveal new signalling pathways in abiotic stress responses. Plant J 42:586-597, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="46"> Medina J, Ballesteros ML, Salinas J: Phylogenetic and functional analysis of <i>Arabidopsis RCI2</i> genes. J Exp Bot 58:4333-4346, 2007.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="47"> Monroy AF, Sangwan V, Dhindsa RS: Low temperature signal transduction during cold acclimation: protein phophatase 2A as an early target for cold-inactivation. Plant J 13:653-660, 1998.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="48"> Murata N, Los DA: Membrane fluidity and temperature perception. Plant Physiol 115:875-879, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="49"> Novillo F, Alonso JM, Ecker JR, Salinas J: CBF2/DREB1C is a negative regulator of <i>CBF1/DREB1B</i> and <i>CBF3/DREB1A</i> expression and plays a central role in stress tolerance in <i>Arabidopsis</i>. Proc Natl Acad Sci USA 101:3985-3990, 2004.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="50"> Novillo F, Medina J, Salinas J: <i>Arabidopsis</i> CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 104:21002-21007, 2007.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="51"> Örvar BL, Sangwan V, Omann F, Dhindsa RS: Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23:785-794, 2000.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="52"> Penfield S: Temperature perception and signal transduction in plants. New Phytol 179:615-628, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="53"> Piñeros M, Tester M: Characterization of the high-affinity verapamil binding site in a plant plasma membrane Ca<sup>2+</sup>-selective channel. J Membr Biol 157:139-145, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="54"> Roberts MR, Salinas J, Collinge DB: 14-3-3 proteins and the response to abiotic and biotic stress. Plant Mol Biol 50:1031-1039, 2002.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="55"> Salinas J: Molecular Mechanisms of Signal Transduction in Cold Acclimation. In Hames BD, Glover DM: Frontiers in Molecular Biology, Oxford University Press, Oxford 2002, pp: 116-139.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="56"> Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS: Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J 31:629-638, 2002.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="57"> Schapire AL, Voigt B, Jasik J, Rosado A, López-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA: <i>Arabidopsis</i> synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374-3388, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="58"> Schulze ED, Beck E, Müller-Hohenstein K: Plant Ecology. Springer, Berlin, Heidelberg, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="59"> Stockinger EJ, Gilmour SJ, Thomashow MF: <i>Arabidopsis thaliana CBF1</i> encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a <i>cis</i>-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035-1040, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="60"> Storey KB: Reptile freeze tolerance: metabolism and gene expression. Cryobiology 52:1-16, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="61"> Suzuki I, Kanesaki Y, Mikami K, Kanehisa M, Murata N: Cold-regulated genes under control of the cold sensor Hik33 in <i>Synechocystis</i>. Mol Microbiol 40:235-244, 2001.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="62"> Tähtiharju S, Sangwan V, Monroy AF, Dhindsa RS, Borg M: The induction of <i>kin</i> genes in cold-acclimating <i>Arabidopsis thaliana</i>. Evidence of a role for calcium. Planta 203:442-447, 1997.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="63"> Van Buskirk HA, Thomashow MF: <i>Arabidopsis</i> transcription factors regulating cold acclimation. Physiol Plant 126:72-80, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="64"> Venketesh S, Dayananda C: Properties, potentials and prospects of antifreezing proteins. Crit Rev Biotechnol 28:57-82, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="65"> Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF: Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of <i>Arabidopsis</i>. Plant J 41:195-211, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="66"> Voituron Y, Servais S, Romestaing C, Douki T, Barré H: Oxidative DNA damage and antioxidant defenses in the European common lizard (<i>Lacerta vivipara</i>) in supercooled and frozen states. Cryobiology 51:74-82, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="67"> Wei H, Dhanaraj AL, Arora R, Rowland LJ, Fu Y, Sun L: Identification of cold acclimation-responsive <i>Rhododendron</i> genes for lipid metabolism, membrane transport and lignin biosynthesis: importance of moderately abundant ESTs in genomic studies. Plant Cell Environ 29:558-570, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="68"> Xiong L, Ishitani M, Lee H, Zhu JK: The <i>Arabidopsis LOS5/ABA3</i> locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063-2083, 2001.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="69"> Xiong L, Schumaker KS, Zhu JK: Cell signalling during cold, drought, and salt stress. Plant Cell 14 (Suppl):S165-183, 2002.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="70"> Yamaguchi-Shinozaki K, Shinozaki K: Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781-803, 2006.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="71"> Yamazaki T, Kawamura Y, Minami A, Uemura M: Calcium-dependent freezing tolerance in <i>Arabidopsis</i> involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389-3404, 2008.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="72"> Yancey PH: Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819-2830, 2005.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="73"> Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S: Stress-induced changes in the <i>Arabidopsis thaliana</i> transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068-1082, 2009.</bibtext>
</bib-other>
<bib-other>
<bibtext seqNum="74"> Zhu J, Dong CH, Zhu JK: Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10.290-295, 2007.</bibtext>
</bib-other>
</biblist>
</ArticleHeader>
</Article>
</Issue>
</Volume>
</Journal>
</Publisher>