Nacházíte se zde: Úvod > Journal of Applied Biomedicine > 9_1 > tichy.xml

tichy.xml

Extensible Markup Language (XML) icon tichy.xml — Extensible Markup Language (XML), 17 kB (17 490 bytes)

Obsah souboru

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE Publisher PUBLIC "-//MetaPress//DTD MetaPress 2.0//EN" "http://public.metapress.com/dtd/MPRESS/MetaPressv2.dtd">
<Publisher>
	<PublisherInfo>
		<PublisherName>Versita, Warsaw</PublisherName>
	</PublisherInfo>
	<Journal>
		<JournalInfo JournalType="Journals">
			<JournalPrintISSN>1214-021X</JournalPrintISSN>
			<JournalElectronicISSN>1214-0287</JournalElectronicISSN>
			<JournalTitle>Journal of Applied Biomedicine</JournalTitle>
			<JournalCode>JAB</JournalCode>
			<JournalID>121649</JournalID>
			<JournalURL>http://versita.metapress.com/link.asp?target=journal&amp;id=121649</JournalURL>
		</JournalInfo>
		<Volume>
			<VolumeInfo>
				<VolumeNumber>9</VolumeNumber>
			</VolumeInfo>
			<Issue>
				<IssueInfo IssueType="Regular">
					<IssueNumberBegin>1</IssueNumberBegin>
					<IssueNumberEnd>1</IssueNumberEnd>
					<IssueSupplement>0</IssueSupplement>
					<IssuePartStart>0</IssuePartStart>
					<IssuePartEnd>0</IssuePartEnd>
					<IssueSequence>000009000120110301</IssueSequence>
					<IssuePublicationDate>
						<CoverDate Year="2011" Month="3" Day="1"/>
						<CoverDisplay>Number 1 / March 2011</CoverDisplay>
					</IssuePublicationDate>
					<IssueID>T2K8422RP813</IssueID>
					<IssueURL>http://versita.metapress.com/link.asp?target=issue&amp;id=T2K8422RP813</IssueURL>
				</IssueInfo>
				<Article ArticleType="Original">
					<ArticleInfo Free="No" ESM="No">
						<ArticleDOI>10.2478/v10136-009-0031-7</ArticleDOI>
						<ArticlePII>451175J641122359</ArticlePII>
						<ArticleSequenceNumber>4</ArticleSequenceNumber>
						<ArticleTitle Language="En">Caffeine-suppressed ATM pathway leads to decreased p53 phosphorylation and increased programmed cell death in gamma-irradiated leukaemic molt-4 cells</ArticleTitle>
						<ArticleFirstPage>49</ArticleFirstPage>
						<ArticleLastPage>56</ArticleLastPage>
						<ArticleHistory>
							<RegistrationDate>20101206</RegistrationDate>
							<ReceivedDate>20101206</ReceivedDate>
							<Accepted>20101206</Accepted>
							<OnlineDate>20101206</OnlineDate>
						</ArticleHistory>
						<FullTextFileName>451175J641122359.pdf</FullTextFileName>
						<FullTextURL>http://versita.metapress.com/link.asp?target=contribution&amp;id=451175J641122359</FullTextURL>
						<Composite>1</Composite>
					</ArticleInfo>
					<ArticleHeader>
						<AuthorGroup>
							<Author AffiliationID="A1 A3">
								<GivenName>Aleš</GivenName>
								<Initials/>
								<FamilyName>Tichý</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A3">
								<GivenName>Darina</GivenName>
								<Initials/>
								<FamilyName>Muthná</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A1">
								<GivenName>Jiřina</GivenName>
								<Initials/>
								<FamilyName>Vávrová</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A2">
								<GivenName>Jaroslav</GivenName>
								<Initials/>
								<FamilyName>Pejchal</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A1">
								<GivenName>Zuzana</GivenName>
								<Initials/>
								<FamilyName>Šinkorová</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A1">
								<GivenName>Lenka</GivenName>
								<Initials/>
								<FamilyName>Zárybnická</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Author AffiliationID="A3">
								<GivenName>Martina</GivenName>
								<Initials/>
								<FamilyName>Řezáčová</FamilyName>
								<Degrees/>
								<Roles/>
							</Author>
							<Affiliation AFFID="A1">
								<OrgDivision/>
								<OrgName>Department of Radiobiology, University of Defence in Brno, Czech Republic</OrgName>
								<OrgAddress/>
							</Affiliation>
							<Affiliation AFFID="A2">
								<OrgDivision/>
								<OrgName>Centre of Advanced Studies, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, Czech Republic</OrgName>
								<OrgAddress/>
							</Affiliation>
							<Affiliation AFFID="A3">
								<OrgDivision/>
								<OrgName>Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University in Prague, Czech Republic</OrgName>
								<OrgAddress/>
							</Affiliation>
						</AuthorGroup>
						<Abstract Language="En">Ionising radiation (IR) is one of the main treatment modalities in oncology. However, we still search for substances which can radio-sensitize tumour cells. In this study we used caffeine, a non-specific ataxia-telangiectasia mutated kinase (ATM) inhibitor, and studied its effect on the activation of the proteins involved in cell cycle control and the induction of apoptosis in human T-lymphocyte leukaemic MOLT-4 cells (p53 wt). We evaluated the expression of the tumour-suppressor p53 (itself and phosphorylated on Ser&lt;sup&gt;15&lt;/sup&gt; and Ser&lt;sup&gt;392&lt;/sup&gt;), the cell cycle regulator p21, and the anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1). After treatment with 2 mM caffeine, the cells were irradiated by 1 or 3 Gy, lysed and the proteins detected by Western-blotting. Apoptosis was determined by flow-cytometric annexin V/propidium iodine detection. Irradiation by 1 or 3 Gy induced p53 phosphorylation at Ser&lt;sup&gt;15&lt;/sup&gt; and Ser&lt;sup&gt;392&lt;/sup&gt; after 2 h with maximum after 4 h. Adding caffeine significantly inhibited Ser&lt;sup&gt;15&lt;/sup&gt; phosphorylation, which is ATM-dependent but surprisingly also Ser&lt;sup&gt;392&lt;/sup&gt; phosphorylation, which is ATM-independent, suggesting that caffeine might have another cellular target (protein kinase). Similarly, caffeine caused a substantial decrease in p21 in combination with both doses of IR and also Mcl-1 was down-regulated. Three days after irradiation, caffeine significantly increased induction of apoptosis. The ATM/p53 pathway was suppressed by caffeine, which led to increased apoptosis accompanied by a p53-independent decrease in Mcl-1. It also caused down-regulation of p21, which possibly contributed to the shortened cell cycle arrest necessary for effective DNA repair and thus impeded radio-resistance. Caffeine promotes the cytotoxic effect of ionising radiation and provides a possible platform for the development of new anti-cancer therapeutics known as radio-sensitizers.</Abstract>
						<KeywordGroup Language="En">
							<Keyword>ATM</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>p53</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>p21</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>Mcl-1</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>caffeine</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>ionising radiation</Keyword>
						</KeywordGroup>
						<KeywordGroup Language="En">
							<Keyword>MOLT-4</Keyword>
						</KeywordGroup>
						<biblist>
							<bib-other>
								<bibtext seqNum="1"> Asaad NA, Zeng ZC, Guan J, Thacker J, Iliakis G. Homologous recombination as a potential target for caffeine radiosensitization in mammalian cells: reduced caffeine radiosensitization in XRCC2 and XRCC3 mutants. Oncogene. 19: 5788-5800, 2000.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="2"> Bakkenist C, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimmer dissociation. Nature. 421: 499-506, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="3"> Bartek J, Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 490: 117-122, 2001.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="4"> Blasina A, Price BD, Turenne GA, McGowan CH. Caffeine inhibits the checkpoint kinase ATM. Curr Biol. 9: 1135-1138, 1999.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="5"> Block WD, Merkle D, Meek K, Lees-Miller SP. Selective inhibition of the DNA-dependent protein kinase (DNA-PK) by the radiosensitizing agent caffeine. Nucl Acids Res. 32: 1967-1972, 2004.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="6"> Borner C. The Bcl-2 protein family: Sensors and checkpoints for life-or-death decisions. Mol Immunol. 39: 615-647, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="7"> Claudio PP, Cui J, Ghafouri M, Mariano C, White MK, Safak M, Sheffield JB, Giordano A, Khalili K, Amini S, Sawaya BE. Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol. 208: 602-612, 2006.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="8"> Cortez D. Caffeine inhibits checkpoint responses without inhibiting the ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases. J Biol Chem. 278: 37139-37145, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="9"> Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA. Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene. 22: 5813-5827, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="10"> Deplanque G, Céraline J, Mah-Becherel MC, Cazenave JP, Bergerat JP, Klein-Soyer C. Caffeine and the G2/M block override: A concept resulting from a misleading cell kinetic delay, independent of functional p53. Int J Cancer. 94: 363-369, 2001.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="11"> Feng Y, Wu J, Feng X, Tao D, Hu J, Qin J, Li X, Xiao W, Gardner K, Judge SIV, Li QQ, Gong J. Timing of apoptosis onset depends on cell cycle progression in peripheral blood lymphocytes and lymphocytic leukemia cells. Oncol Rep. 17: 1437-1444, 2007.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="12"> Helt CE, Cliby WA, Keng PC, Bambara RA, O'Reilly MA. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein exhibit selective target specificities in response to different forms of DNA damage. J Biol Chem. 280: 1186-1192, 2005.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="13"> Hill R, Leidal AM, Madureira PA, Gillis LD, Waisman DM, Chiu A, Lee PW. Chromium-mediated apoptosis: involvement of DNA-dependent protein kinase (DNA-PK) and differential induction of p53 target genes. DNA Repair (Amst). 7: 1484-1499, 2008.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="14"> Hoekstra MF. Responses to DNA damage and regulation of cell cycle checkpoints by the ATM protein kinase family. Curr Opin Genet Dev. 7: 170-175, 1997.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="15"> Jamil S, Mojtabavi S, Hojabrpour P, Cheah S, Duronio V. An essential role for MCL-1 in ATR-mediated CHK1 phosphorylation. Mol Biol Cell. 19: 3212-3220, 2005.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="16"> Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51: 6304-6311, 1991.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="17"> Kaufmann WK, Heffernan TP, Beaulieu LM, Doherty S, Frank AR, Zhou Y, Bryant MF, Zhou T, Luche DD, Nikolaishvili-Feinberg N, Simpson DA, Cordeiro-Stone M. Caffeine and human DNA metabolism: the magic and the mystery. Mutat Res. 532: 85-102, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="18"> Khanna KK, Lavin MF, Jackson SP, Mulhern TD. ATM, a central controller of cellular responses to DNA damage. Cell Death Differ. 8: 1052-1065, 2001.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="19"> Lavin MF, Shiloh Y. The genetic defect in ataxia-telangiectasia. Annu Rev Immunol. 15: 177-202, 1997.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="20"> Lavin MF, Khanna KK, Beamish H, Spring K, Watters D, Shiloh Y. Relationship of the ataxia-telangiectasia protein ATM to phosphoinositide 3-kinase. Trends Biochem Sci. 20: 382-383, 1995.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="21"> Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ. Ataxia telangiectasia-mutated phosphorylates Chk2 &lt;i&gt;in vivo&lt;/i&gt; and &lt;i&gt;in vitro.&lt;/i&gt; Proc Natl Acad Sci USA. 97: 10389-10394, 2000.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="22"> Maya R, Balass M, Kim S-T, Shkedy D, Martinez Leal J-F, Shifman O, Moas M, Buschmann T, Ronai Z, Shiloh Y, Kastan MB, Katzir E et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15: 1067-1077, 2001.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="23"> Meng AG, Jiang LL. Induction of G2/M arrest by pseudolaric acid B is mediated by activation of the ATM signaling pathway. Acta Pharmacol Sin. 30: 442-450, 2009.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="24"> Pandita TK. A multifaceted role for ATM in genome maintenance. Exp Rev Mol Med. 5: 1-21, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="25"> Sabisz M, Skladanowski A. Modulation of cellular response to anticancer treatment by caffeine: inhibition of cell cycle checkpoints, DNA repair and more. Curr Pharm Biotechnol. 9: 325-336, 2008.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="26"> Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E, Xie D. Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry. 36: 10117-10124, 1997.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="27"> Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM, Abraham RT. Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res. 59: 4375-4382, 1999.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="28"> Saito S, Goodarzi AA, Higashimoto Y, Noda Y, Lees-Miller SP, Appella E, Anderson CW. ATM mediates phosphorylation at multiple p53 sites, including Ser(46), in response to ionizing radiation. J Biol Chem. 277: 12491-12494, 2002.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="29"> Schwartz GK. CDK inhibitors: cell cycle arrest versus apoptosis. Cell Cycle. 1: 122-123, 2002.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="30"> Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 91: 325-334, 1997.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="31"> Skvara H, Thallinger C, Wacheck V, Monia BP, Pehamberger H, Jansen B, Selzer E. Mcl-1 blocks radiation-induced apoptosis and inhibits clonogenic cell death. Anticancer Res. 25: 2697-2703, 2005.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="32"> Steinmann KE, Belinsky GS, Lee D, Schlegel R. Chemically induced premature mitosis: differential response in rodent and human cells and the relationship to cyclin B synthesis and p34cdc2/cyclin B complex formation. Proc Natl Acad Sci USA. 88: 6843-6837, 1991.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="33"> Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, Taya Y, Prives C, Abraham RT. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev. 13: 152-157, 1999.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="34"> Tichý A, Záškodová D, Řezáčová M, Vávrová J, Vokurková D, Pejchal J, Vilasová Z, Cerman J, Österreicher J. Gamma-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4. Acta Biochim Pol. 54: 281-287, 2007.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="35"> Tichý A, Záškodová D, Pejchal J, Řezáčová M, Österreicher J, Vávrová J, Cerman J. Gamma irradiation of human leukaemic cells HL-60 and MOLT-4 induces decrease in Mcl-1 and Bid, release of cytochrome c, and activation of caspase-8 and caspase-9. Int J Radiat Biol. 84: 523-530, 2008.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="36"> Vávrová J, Mareková Řezáčová M, Vokurková D, Szkanderová S, Psutka J. Caffeine induces a second wave of apoptosis after low dose-rate gamma radiation of HL-60 cells. Radiat Environ Biophys. 42: 193-199, 2003.</bibtext>
							</bib-other>
							<bib-other>
								<bibtext seqNum="37"> Vávrová J, Řezáčová M, Vokurková D, Psutka J. Cell cycle alteration, apoptosis and response of leukemic cell lines to gamma radiation with highand low-dose rate. Physiol Res. 53: 335-342, 2004.</bibtext>
							</bib-other>
						</biblist>
					</ArticleHeader>
				</Article>
			</Issue>
		</Volume>
	</Journal>
</Publisher>